ГЛАВНЫЕ НОВОСТИ
Рынок нефтепродуктов: запуск новых фьючерсных контрактов Майские тренды IT-технологии в нефтегазовой промышленности Регистрация правил доступа на торги и новые этапы road show фьючерса на Urals ИД «Недра» выступил спонсором выставки и конференции Offshore Technology Conference в США Oil & Gas Journal Russia признан «Лучшим брендом 2016 года» среди нефтегазовых изданий России ИД «Недра» – участник Frankfurt Book Fair 2016 Эксперты PwC оценили перспективы мирового рынка малотоннажного производства СПГ Регенерация бурового раствора при бурении скважин с оптимизированной конструкцией Мировое измерение российского нефтесервиса Временные трубопроводы Интервью с Андреем Бочковым, заместителем генерального директора по ГРР и развитию Перспективы проекта по организации мелкооптовой биржевой торговли нефтепродуктами в России Brent 57,25 -0,6200 (-1,07%) USD 57,5118 -0,0588 (-0,1%) Micex Oil & Gas 5032,85 +0 (0,00%)

Главные новости

Среда, 12.07.17
«Газпром нефть» создает цифровую модель Новопортовского месторождения

В Научно-техническом центре «Газпром нефти» создается интегрированная (комплексная) цифровая модель Новопортовского нефтегазоконденсатного месторождения, которая объединит три ключевых блока данных – блок геологии и разработки месторождения, блок добычи, к которому относятся конструкции и глубинное оборудование скважин, и блок наземной инфраструктуры. На основании результатов численных расчетов новой модели будет сформирован комплекс оптимальных решений по дальнейшему развитию проекта «Новый порт».

Использование модели позволит на любом этапе определить, как изменение какого-либо параметра может повлиять на систему в целом, так как все составляющие интегрированной модели объединены в одну структуру и рассчитываются на единой платформе. Так можно точнее прогнозировать объемы добычи и принимать наиболее обоснованные решения, учитывающие потенциальные инфраструктурные риски, связанные с разработкой подгазовых залежей. В 2016 году был выполнен пилотный проект на Новопортовском месторождении, подтвердивший целесообразность создания полномасштабных интегрированных моделей. Первые расчеты с использованием интегрированной модели будут произведены в августе 2017 года.

Необходимость создания интегрированной модели Новопортовского месторождения продиктована, в первую очередь, наличием крупных подгазовых залежей нефти, освоение которых – одно из ключевых направлений Технологической стратегии «Газпром нефти», которое требует тесной интеграции технологий для разработки как нефтяных, так и газовых пластов. Если при добыче нефти основные технологические решения связаны с оптимальным расположением скважин, их конструкцией и назначением, то в добыче газа ключевые технологии, в первую очередь, ориентированы на создание эффективной и безопасной наземной инфраструктуры. Кроме того, использование интегрированной модели поможет оценить риски, найти пути оптимизации работы фонда в случае прорыва газа для сохранения текущего уровня добычи.

Другие статьи по этой теме
 1 2 3 >  В конец ›
Основные индексы:
Brent 57,25 -0,6200 (-1,07%)
Dow Jones 23 163,04 5,44 (0,02%)
Курсы валют:
USD 57,5118 -0,0588 (-0,1%)
EUR 67,8927 -0,0406 (-0,06%)
CNY 86,8837 0,0306 (0,04%)
JPY 50,6980 -0,4055 (-0,79%)
Акции нефтегазовых компаний:
Micex Oil & Gas 5032,85 0 (0,00%)
Rosneft 322,15 0,6000 (0,19%)
Lukoil 2996 11,0000 (0,37%)
Gazprom 126,79 1,2900 (1,03%)
Gazprom Neft 235,65 0,6500 (0,28%)
Surgutneftegaz 29,595 0,2650 (0,90%)
Tatneft 423,4 7,8500 (1,89%)
Bashneft 2128 -6,0000 (-0,28%)
Источник – Финмаркет
Tools
Длина, расстояние
000,00
Площадь
000,00
Объем
000,00
Вес
000,00
Скорость
000,00
Температура
000,00
Плотность
000,00
Давление
000,00
Сила
000,00
Объемная
скорость
000,00
Объем/Вес нефти
000,00
Плотность нефти
000,00
Объем/вес/энергия
природного газа
000,00
Объемный расход
газа
000,00
Rad
Gra
x!
(
)
С
AC
Inv
sin
ln
7
8
9
/
Pi
cos
log
4
5
6
*
e
tan
sqrt
1
2
3
-
Ans
exp
x^y
0
.
=
+

"Бурение и освоение нефтяных и газовых скважин. Терминологический словарь-справочник", Булатов А.И., Просёлков Ю.М., М.: Недра, 2007

Примеры терминов:

  • Химический состав нефти

    (oil chemical composition) химические соединения и элементы, составляющие нефть: углеводороды - метановые, нафтеновые, реже ароматические; небольшие количества кислородных, сернистых, азотистых органических соединений (нафтеновых кислот, асфальтенов, смол и др.); минеральные вещества (при элементном составе): углерод (в среднем 85 %), водород (в среднем 13 %), сера, азот, кислород, зола с большим перечнем микрокомпонентов (И.М. Губкин, 1937; М.Ф. Мирчинк, 1958; Ш.К. Гиматудинов, 1963; Л.А. Гуляева, С.А. Пунанова, 1973; К. Бека, И. Высоцкий, 1976; М.И. Максимов, 1975; В.М. Муравьев, 1977).

    (oil chemical composition) химические соединения и элементы, составляющие нефть: углеводороды - метановые, нафтеновые, реже ароматические; небольшие количества кислородных, сернистых, азотистых органических соединений (нафтеновых кислот, асфальтенов, смол и др.); минеральные вещества (при элементном составе): углерод (в среднем 85 %), водород (в среднем 13 %), сера, азот, кислород, зола с большим перечнем микрокомпонентов (И.М. Губкин, 1937; М.Ф. Мирчинк, 1958; Ш.К. Гиматудинов, 1963; Л.А. Гуляева, С.А. Пунанова, 1973; К. Бека, И. Высоцкий, 1976; М.И. Максимов, 1975; В.М. Муравьев, 1977).
  • Газовый каротаж

    (mud logging) метод, заключающийся в определении количества углеводородных газов, поступающих в буровой раствор при бурении скважины. Результаты газового каротажа позволяют выделить газонасыщенные пласты.

    (mud logging) метод, заключающийся в определении количества углеводородных газов, поступающих в буровой раствор при бурении скважины. Результаты газового каротажа позволяют выделить газонасыщенные пласты. Для отбора газа из циркулирующего по скважине бурового раствора применяют дегазаторы. Содержание газа определяют газоанализатором путем извлечения газа и определения его количества. При бурении скважин с отбором керна Г.к. может быть проведен и по кернам.

  • Образование кратера

    (creation of crater) в случае мощного выброса поверхность вокруг скважины может провалиться в огромную полость, образованную силой выносимых бурового раствора, газа, нефти и воды. Всё это может привести к разрушению и провалу буровой установки.

    (creation of crater) в случае мощного выброса поверхность вокруг скважины может провалиться в огромную полость, образованную силой выносимых бурового раствора, газа, нефти и воды. Всё это может привести к разрушению и провалу буровой установки.
  • Стингер

    (stinger) устройство на трубоукладочной барже, предотвращающее недопустимое напряжение изгиба в трубах при их спуске.

    (stinger) устройство на трубоукладочной барже, предотвращающее недопустимое напряжение изгиба в трубах при их спуске.
  • Уплотняющее бурение

    (infill drilling) бурение для загущения проектной сетки размещения скважин.

    (infill drilling) бурение для загущения проектной сетки размещения скважин.
  • Инклинометр

    (inclinometer) прибор для измерения угла наклона и азимута оси бурящейся скважины, что достигается наличием в И. груза, маятника и магнитной стрелки или жироскопа. Регистрация в И. может быть электрическая с использованием каротажного кабеля и установки для электрического каротажа или фотографическая (фотоинклинометр).

    (inclinometer) прибор для измерения угла наклона и азимута оси бурящейся скважины, что достигается наличием в И. груза, маятника и магнитной стрелки или жироскопа. Регистрация в И. может быть электрическая с использованием каротажного кабеля и установки для электрического каротажа или фотографическая (фотоинклинометр).

  • Теплокислотная обработка скважин

    (thermal acidizing, thermal acid treatment) обработка скважин, имеющая своей целью расплавление парафина, смол и асфальтенов с одновременным воздействием кислоты на породы ПЗП.

    (thermal acidizing, thermal acid treatment) обработка скважин, имеющая своей целью расплавление парафина, смол и асфальтенов с одновременным воздействием кислоты на породы ПЗП.
  • Ротор

    (rotor) механизм, являющийся многофункциональным оборудованием буровой установки. Он передает вращение долоту через ведущую трубу и бурильную колонну и удерживает на весу бурильную колонну, если от неё отсоединена талевая система. Он является опорным столом при свинчивании и развинчивании бурильных труб во время спуско-подъёмных операций и опорным столом при спуске обсадных колонн; служит стопорным устройством для долота, свинчиваемого с УБТ или погружным двигателем; центрирует бурильную колонну в скважине и т.д. Основными узлами ротора являются: станина во внутренней полости которой установлен на подшипнике стол с укрепленным зубчатым коническим венцом; вал, на внешнем конце которого установлено зубчатое колесо под цепную передачу, а на внутреннем - коническая шестерня, входящая в зацепление с коническим венцом; рифленый кожух, ограждающий вращающийся стол; вкладыш для обхвата ведущей трубы, проходящей через отверстие.

    (rotor) механизм, являющийся многофункциональным оборудованием буровой установки. Он передает вращение долоту через ведущую трубу и бурильную колонну и удерживает на весу бурильную колонну, если от неё отсоединена талевая система. Он является опорным столом при свинчивании и развинчивании бурильных труб во время спуско-подъёмных операций и опорным столом при спуске обсадных колонн; служит стопорным устройством для долота, свинчиваемого с УБТ или погружным двигателем; центрирует бурильную колонну в скважине и т.д. Основными узлами ротора являются: станина во внутренней полости которой установлен на подшипнике стол с укрепленным зубчатым коническим венцом; вал, на внешнем конце которого установлено зубчатое колесо под цепную передачу, а на внутреннем - коническая шестерня, входящая в зацепление с коническим венцом; рифленый кожух, ограждающий вращающийся стол; вкладыш для обхвата ведущей трубы, проходящей через отверстие.
Совместно с "Мультитран"
Яндекс.Метрика