ГЛАВНЫЕ НОВОСТИ
Rotork открывает новое производство приводов в России Рынок нефтепродуктов: запуск новых фьючерсных контрактов Майские тренды IT-технологии в нефтегазовой промышленности Регистрация правил доступа на торги и новые этапы road show фьючерса на Urals Более 200 представителей геологического сообщества приняли участие в Международной газовой конференции г. Анапе 16 – 18 апреля 2018 года Oil & Gas Journal Russia второй раз подряд признан лучшим брендом среди российских нефтегазовых журналов ИД «Недра» выступил спонсором выставки и конференции Offshore Technology Conference в США Проблемы переработки тяжелого нефтяного и остаточного сырья Иллюзия замещения Налоговый маневр… или тупик? Новая парадигма мировой энергетики Анализ применения РУС для зарезок в открытом стволе на Восточно-Мессояхском месторождении Новый уровень эффективности Brent 80,53 +1,0600 (1,33%) USD 65,3065 -0,5075 (-0,77%) Micex Oil & Gas 7006,05 -93,68 (-1,32%)

Главные новости

Понедельник, 05.02.18
ЛУКОЙЛ начал получать нефть со второй фазы месторождения Филановского

ЛУКОЙЛ завершил бурение и ввод в эксплуатацию первой производственной скважины на второй фазе развития месторождения имени Владимира Филановского в Каспийском море. В ближайшее время будет пробурена нагнетательная скважина для этого проекта.

Скважина второй фазы имеет глубину вертикального ствола в 3,5 тыс метро, а протяженность горизонтального участка – 1,2 тыс метров. В настоящее время ежедневная продуктивность скважины составляет 2,4 тыс тонн в день, а общая добыча на месторождении имени Филановского достигла 16,8 тыс тонн в сутки.

Месторождение имени Владимира Филановского открыто в 2005 году, напоминает World Oil. Область расположена в северном Каспийском море, на расстоянии в 220 км из города Астрахани. Глубина воды в области колеблется от семи до 11 метров.

Его извлекаемые запасы по категориям С1+С2 составляют 153,1 млн тонн нефти и 32,2 млрд кубометров газа. Как сообщалось, ЛУКОЙЛ планирует вложить в разработку этого участка недр с 2016-го по 2045 год 882 млрд рублей (в ценах 2016 года).

В данный момент на проекте работает семь производственных и две нагнетательных скважины. Вместе с будущими скважинами второй очереди ЛУКОЙЛ выйдет на уровень добычи в 6 млн тонн нефти в год. Всего для освоения нефтегазовых промыслов Северного Каспия ЛУКОЙЛ должен построить более 25 платформ.

Данный промысел стал вторым шельфовым проектом ЛУКОЙЛа на Каспии. Весной 2010 года компания приступила к добыче нефти на расположенном неподалеку месторождении имени Корчагина. Оно несколько больше: запасы углеводородов по категориям 3Р (доказанные, вероятные и предполагаемые) там превышают 270 млн баррелей нефтяного эквивалента, а максимальный уровень добычи должен составить 2,5 млн тонн нефти и 1 млрд кубометров газа в год. 

Источник: ТэкноБлог.

Другие статьи по этой теме
 1 2 > 
Основные индексы:
Brent 80,53 1,0600 (1,33%)
Dow Jones 25 444,34 64,89 (0,26%)
Курсы валют:
USD 65,3065 -0,5075 (-0,77%)
EUR 75,3702 0,0461 (0,06%)
CNY 94,1464 -0,7904 (-0,83%)
JPY 57,9241 -0,6215 (-1,06%)
Акции нефтегазовых компаний:
Micex Oil & Gas 7006,05 -93,68 (-1,32%)
Rosneft 465,3 -1,7000 (-0,36%)
Lukoil 4673,5 -19,5000 (-0,42%)
Gazprom 155,7 -5,6200 (-3,48%)
Gazprom Neft 367,3 1,3000 (0,36%)
Surgutneftegaz 27,03 -0,3700 (-1,35%)
Tatneft 776,9 0,9000 (0,12%)
Bashneft 1948 -2,0000 (-0,10%)
Источник – Финмаркет
Tools
Длина, расстояние
000,00
Площадь
000,00
Объем
000,00
Вес
000,00
Скорость
000,00
Температура
000,00
Плотность
000,00
Давление
000,00
Сила
000,00
Объемная
скорость
000,00
Объем/Вес нефти
000,00
Плотность нефти
000,00
Объем/вес/энергия
природного газа
000,00
Объемный расход
газа
000,00
Rad
Gra
x!
(
)
С
AC
Inv
sin
ln
7
8
9
/
Pi
cos
log
4
5
6
*
e
tan
sqrt
1
2
3
-
Ans
exp
x^y
0
.
=
+

"Бурение и освоение нефтяных и газовых скважин. Терминологический словарь-справочник", Булатов А.И., Просёлков Ю.М., М.: Недра, 2007

Примеры терминов:

  • Скорость фильтрации

    (filtration velocity) определяется объёмным расходом жидкости через единицу площади поперечного сечения пласта. Пропорциональна градиенту давления, проницаемости породы и обратно пропорциональна вязкости фильтрующейся через породу жидкости. С.ф. всегда меньше истинной скорости движения жидкости.

    (filtration velocity) определяется объёмным расходом жидкости через единицу площади поперечного сечения пласта. Пропорциональна градиенту давления, проницаемости породы и обратно пропорциональна вязкости фильтрующейся через породу жидкости. С.ф. всегда меньше истинной скорости движения жидкости.
  • Горелка для полного сжигания нефти

     (clean burning oil burner) – горелка, используемая при пробной эксплуатации подводной скважины для сжигания её продуктов.

     (clean burning oil burner) – горелка, используемая при пробной эксплуатации подводной скважины для сжигания её продуктов.
  • Испытатель опробователь пласта

    (formation tester) скважинный прибор, спускаемый на кабеле в скважину для отбора флюидов из пласта с регистрацией давления, притока и давления в скважине.

    (formation tester) скважинный прибор, спускаемый на кабеле в скважину для отбора флюидов из пласта с регистрацией давления, притока и давления в скважине.
  • Архейская эра

    (Archean) - самая древняя эра жизни Земли; горные породы представлены прокристаллизовавшимися осадочными образованиями (граниты, гранитогнейсы и др.).

    (Archean) - самая древняя эра жизни Земли; горные породы представлены прокристаллизовавшимися осадочными образованиями (граниты, гранитогнейсы и др.).
  • Донный шланг

    (base hose) шланг при системе беспричального налива нефти.

    (base hose) шланг при системе беспричального налива нефти.
  • Песчаники

    (sandstones) осадочные цементированные (твердые, скальные) обломочные породы с обломочными зёрнами размером от 0,1 до 2 мм (согласно некоторым авторам от 0,1 до 1,0 мм), т.е цементированные пески. Обычно по составу обломочных зерен выделяют песчаники трех основных типов: 1) мономинеральные (кварцевые); 2) олигомиктовые; 3) полимиктовые. При дробном расчленении выделяют следующие группы песчаников: 1) мономинеральные (кварцевые); 2) биминеральные (полевошпатово-кварцевые, глауконитово-кварцевые и др.); 3) полиминеральные (слюдисто-полевошпатово-кварцевые и др.); 4) полимиктовые (из обломков нескольких минералов и горных пород). Широко распространены кварцевые песчаники, но во многих песчаниках обломочные зерна представлены кварцем и полевыми шпатами, несколькими минералами, обломками минералов и горных пород.

    (sandstones) осадочные цементированные (твердые, скальные) обломочные породы с обломочными зёрнами размером от 0,1 до 2 мм (согласно некоторым авторам от 0,1 до 1,0 мм), т.е цементированные пески. Обычно по составу обломочных зерен выделяют песчаники трех основных типов: 1) мономинеральные (кварцевые); 2) олигомиктовые; 3) полимиктовые. При дробном расчленении выделяют следующие группы песчаников: 1) мономинеральные (кварцевые); 2) биминеральные (полевошпатово-кварцевые, глауконитово-кварцевые и др.); 3) полиминеральные (слюдисто-полевошпатово-кварцевые и др.); 4) полимиктовые (из обломков нескольких минералов и горных пород). Широко распространены кварцевые песчаники, но во многих песчаниках обломочные зерна представлены кварцем и полевыми шпатами, несколькими минералами, обломками минералов и горных пород. По размеру основной массы обломочных зерен рачличают: грубозернистый песчаник (1-2 мм), крупнозернистый (0,5-1,0 мм), среднезернистый (0,25-0,5 мм), мелкозернистый (0,10-0,25 мм). Цемент песчаников разнообразен (мергелистый, известковистый, глинистый, кремнистый, железистый - из гидрооксидов железа «цемент давления» и др.).
  • Гамма-каротаж (ГК)

     (gamma logging) радиоактивный каротаж, основанный на дифференциации горных пород и полезных ископаемых по их естественной гамма-активности и заключающийся в изучении естественного гамма-поля по стволу скважины путем регистрации интенсивности гамма-излучения...

     (gamma logging) радиоактивный каротаж, основанный на дифференциации горных пород и полезных ископаемых по их естественной гамма-активности и заключающийся в изучении естественного гамма-поля по стволу скважины путем регистрации интенсивности гамма-излучения, возникающего при самопроизвольном распаде радиоактивных элементов в горных породах, который позволяет в комплексе с материалами других видов каротажа проводить литологическое расчленение разрезов скважин, корреляцию, выделение пород-коллекторов, оценку глинистости пород, косвенное определение при благоприятных условиях пористости, остаточной водонасыщенности и проницаемости пород-коллекторов и т.д. (Д.И. Дьяконов, Е.И. Леонтьев, Г.С. Кузнецов, 1977). Или: метод радиоактивного каротажа, позволяющий фиксировать гамма-аномалии в пласте, в стволе скважины и в цементном кольце при контроле за разработкой, используемый для выявления радиогеохимических аномалий, выполнения исследований методом радиоактивных изотопов, привязки к разрезу и учета гамма-фона пород при измерении другими нейтронными методами в различных категориях скважин. Или: радиоактивный каротаж, основанный на измерении естественной гамма-активности горных пород (ГОСТ 2260999).
  • Гидравлический разрыв пластов, гидроразрыв пластов (ГРП)

     (hydraulic fracturing) эффективный метод механической обработки продуктивного пласта. Его сущность заключается в нагнетании в призабойную зону жидкости под высоким давлением, в результате чего происходит разрыв или расслоение пород и образование новых или расширение существующих трещин, сохранение которых обеспечивается закачкой вместе с жидкостью закрепляющего агента (кварцевого песка и др.).

     (hydraulic fracturing) эффективный метод механической обработки продуктивного пласта. Его сущность заключается в нагнетании в призабойную зону жидкости под высоким давлением, в результате чего происходит разрыв или расслоение пород и образование новых или расширение существующих трещин, сохранение которых обеспечивается закачкой вместе с жидкостью закрепляющего агента (кварцевого песка и др.).
Совместно с "Мультитран"
Яндекс.Метрика