ГЛАВНЫЕ НОВОСТИ

Материалы партнеров

  • image

    Электрощит Самара представил собственные цифровые решения для нефтегазовой отрасли в рамках выставки «Нефтегаз-2018»

    15:22 19 Апрель 2018 Электрощит Самара

    16–19 апреля 2018 г. в Москве состоялась 18-я международная выставка «Нефтегаз-2018. Оборудование и технологии для нефтегазового комплекса». В ее рамках компания Электрощит Самара продемонстрировала собственные разработки в сфере цифровых подстанций для нефтегазовой отрасли. В частности, был представлен рабочий образец «умной» ячейки – комплектного распределительного устройства КРУ-СЭЩ-70, оснащенного новыми средствами диагностики и интеллектуальной системой мониторинга электрооборудования. Предложенные решения позволят более оперативно предупреждать аварийные ситуации и снизить уровень травматизма при обслуживании, а также существенно повысят общую энергоэффективность подстанции.

    По словам директора департамента нефти и газа ЗАО ГК «Электрощит-ТМ Самара» Владимира Вишневского, на сегодняшний день традиционная модель энергетики видоизменилась: рынок все больше склоняется к энергоэффективному электрооборудованию, что требует скорейшего перехода к «умному» распределению и «умным» сетям. «Цифровизация подстанций – это не только сбор сигналов и передача информации в цифровом виде, но и внедрение интеллектуальной системы контроля, которая следит за логикой работы всего оборудования и обеспечивает более высокий уровень безопасности. Плюсы для компаний нефтегазовой добычи и переработки очевидны – экономия на материалах и обслуживающем персонале подстанции, а также простота и надежность в эксплуатации. Как итог – повышение общей энергоэффективности и более точное планирование расходов, – отметил В. Вишневский. – Предложенная нами цифровая ячейка для подстанций – полностью рабочий образец, на основе которого в дальнейшем можно проектировать индивидуальные решения для конкретных проектов. На сегодняшний день, Электрощит Самара уже успешно внедряет типовые проектные и технические решения в части комплектных трансформаторных подстанций для своих ключевых клиентов в нефтегазовой сфере».  

    Технические особенности цифровой ячейки КРУ-СЭЩ-70

    Комплектное распределительное устройство внутренней установки КРУ-СЭЩ-70 предназначено для приема и распределения электрической энергии переменного трехфазного тока с номинальным значением напряжения 6–20 кВ и тока 630–4000 А с частотой 50 Гц. Новая «умная» ячейка – это комплексное решение, которое включает в себя: сами компоненты ячейки (выключатель с контролем коммутационного ресурса, микропроцессорное устройство РЗА, работающее по протоколу МЭК 61850, интеллектуальное электронное устройство телеизмерения, телеуправления, телесигнализации); датчики (температурные, индуктивные датчики положения, датчики дуговой защиты, видеонаблюдение); программное обеспечение АСУ-МТ.

    Дополнительные датчики в «умной» ячейке обеспечивают работу интеллектуальной системы мониторинга электрооборудования. Так, по данным ассоциации НЕТА, 25% повреждений в ячейках возникают из-за неисправностей в контактных соединениях. Установка современных пирометрических датчиков температуры снижает этот риск, своевременно предупреждая эксплуатационный персонал о возможных проблемах. В ячейку можно установить до 9 пирометрических датчиков, информация от которых передается на модуль индикации и на верхний уровень АСУ.

    Еще один элемент системы мониторинга – бесконтактные индуктивные датчики, заменившие собой концевые выключатели. Среди преимуществ такого решения – отсутствие необходимости в пробое оксидной пленки, бесконтактное срабатывание, абсолютная износоустойчивость, нечувствительность к пыли, вибрации и влажности.

    Также стоит отметить систему видеомониторинга выключателя и заземляющего разъединителя. Благодаря ей эксплуатационный персонал может в онлайн-режиме наблюдать за коммутационными аппаратами (положение вкачено/выкачено, заземлено) и визуально оценивать контактные соединения. Система проста в установке и эксплуатации, позволяет запускать видеозапись по дискретному сигналу или датчику движения.

    Очевидным преимуществом является и учет коммутационного ресурса выключателя в зависимости от величин токов отключения выключателя и количества циклов отключения. Соответствующие данные отображаются на устройствах РЗА типа БМРЗ; ресурс выключателя рассчитывается в процентах. Это позволяет эксплуатационному персоналу планировать осмотры, ремонтные работы и – что немаловажно – расходы.

Другие статьи по этой теме
Основные индексы:
Brent 79,68 0,9100 (1,16%)
Dow Jones 24 886,81 52,4 (0,21%)
Курсы валют:
USD 61,4090 -0,1855 (-0,3%)
EUR 72,0082 -0,1744 (-0,24%)
CNY 96,1860 -0,2845 (-0,29%)
JPY 55,9867 -0,0516 (-0,09%)
Акции нефтегазовых компаний:
Micex Oil & Gas 6126,98 -21,51 (-0,35%)
Rosneft 378 0,3000 (0,08%)
Lukoil 4230 -33,0000 (-0,77%)
Gazprom 145,27 -0,7900 (-0,54%)
Gazprom Neft 332,25 -0,8500 (-0,26%)
Surgutneftegaz 29,165 -0,2550 (-0,87%)
Tatneft 664 -0,3000 (-0,05%)
Bashneft 2272 -58,0000 (-2,49%)
Источник – Финмаркет
Tools
Длина, расстояние
000,00
Площадь
000,00
Объем
000,00
Вес
000,00
Скорость
000,00
Температура
000,00
Плотность
000,00
Давление
000,00
Сила
000,00
Объемная
скорость
000,00
Объем/Вес нефти
000,00
Плотность нефти
000,00
Объем/вес/энергия
природного газа
000,00
Объемный расход
газа
000,00
Rad
Gra
x!
(
)
С
AC
Inv
sin
ln
7
8
9
/
Pi
cos
log
4
5
6
*
e
tan
sqrt
1
2
3
-
Ans
exp
x^y
0
.
=
+

"Бурение и освоение нефтяных и газовых скважин. Терминологический словарь-справочник", Булатов А.И., Просёлков Ю.М., М.: Недра, 2007

Примеры терминов:

  • Пьезометрический уровень

    (piezometric level) уровень, устанавливающийся в скважинах при вскрытии напорных вод и выражающийся в абсолютных или относительных (от устья) отметках или МПа. Синоним: напорный уровень.

    (piezometric level) уровень, устанавливающийся в скважинах при вскрытии напорных вод и выражающийся в абсолютных или относительных (от устья) отметках или МПа. Синоним: напорный уровень.
  • Скребки

    (scratchers) надеваемые на обсадную колонну устройства, сдирающие со стенки скважины глинистую корку при расхаживании или/и вращении колонны при одновременном движении в заколонном пространстве тампонажного раствора с пониженной водоотдачей.

    (scratchers) надеваемые на обсадную колонну устройства, сдирающие со стенки скважины глинистую корку при расхаживании или/и вращении колонны при одновременном движении в заколонном пространстве тампонажного раствора с пониженной водоотдачей.
  • Газогидратная залежь

    (gas-hydrate pool) залежь, в которой природный газ в земной коре при соответствующих давлении и температуре соединился с поровой водой и перешел в твердое гидратное состояние (Ф.А. Требин, Ю.Ф. Махагон, K.С. Басниев, 1976).

    (gas-hydrate pool) залежь, в которой природный газ в земной коре при соответствующих давлении и температуре соединился с поровой водой и перешел в твердое гидратное состояние (Ф.А. Требин, Ю.Ф. Махагон, K.С. Басниев, 1976).
  • Чистая

    (товарная) нефть (clean oil, pure oil) не более 1 % примесей и воды; для определения чистой нефти производится её испытание на центрифуге, на основании которого выводится содержание воды во взвешенном состоянии и механических примесей.

    (товарная) нефть (clean oil, pure oil) не более 1 % примесей и воды; для определения чистой нефти производится её испытание на центрифуге, на основании которого выводится содержание воды во взвешенном состоянии и механических примесей.
  • Обсадная колонна

    (casing string) это свинченные друг с другом и спущенные в ствол скважины обсадные трубы в целях удержания и изоляции слагающих ствол горных пород. Различают первую обсадную колонну – кондуктор, последнюю обсадную колонну – эксплуатационную колонну, а также хвостовик или летучки (лайнеры) и промежуточные (intermediate) обсадные колонны.

    (casing string) это свинченные друг с другом и спущенные в ствол скважины обсадные трубы в целях удержания и изоляции слагающих ствол горных пород. Различают первую обсадную колонну – кондуктор, последнюю обсадную колонну – эксплуатационную колонну, а также хвостовик или летучки (лайнеры) и промежуточные (intermediate) обсадные колонны.
  • Механический (гранулометрический) анализ

     (granulo-metric analysis) определение содержания песчаных, алевритовых и глинистых частиц, а также псефитовых частиц, слагающих породу или ее терригенную часть, путем обработки рыхлых явно обломочных, глинистых и переходных между ними осадочных пород.

     (granulo-metric analysis) определение содержания песчаных, алевритовых и глинистых частиц, а также псефитовых частиц, слагающих породу или ее терригенную часть, путем обработки рыхлых явно обломочных, глинистых и переходных между ними осадочных пород. А также терригенной части цементированных пород, позволяющей расчленить их на ряд групп или фракций различной крупности зерна. Механический анализ может быть основным или основанным на гидравлических принципах. Гидравлические методы механического анализа пород многочисленны: а) встречной струей; б) падением; г) отмучиванием (методы Сабанина, Вильямса и др.); в) центрифугированием.

  • Центрифуга

    (centrifuge) аппарат, используемый в циркуляционных системах бурового раствора для отделения тонких твёрдых частиц от глинистого бурового раствора после его прохождения через вибрационные сита, пескоотделитель и илоотделитель.

    (centrifuge) аппарат, используемый в циркуляционных системах бурового раствора для отделения тонких твёрдых частиц от глинистого бурового раствора после его прохождения через вибрационные сита, пескоотделитель и илоотделитель.
  • Колонковое долото

    (см. также буровая коронка) (hollow bit, core bit) долото для выбуривания подрезания, отрыва и подъёма на поверхность керна. Колонковое шарошечное долото представляет собой пустотелый цилиндр  корпус с вмонтированными в торце шарошками;

    (см. также буровая коронка) (hollow bit, core bit) долото для выбуривания подрезания, отрыва и подъёма на поверхность керна. Колонковое шарошечное долото представляет собой пустотелый цилиндр  корпус с вмонтированными в торце шарошками; в верхней части корпуса имеется резьба для соединения с бурильными трубами. К.д. углубляет забой в виде кольцевой выработки, а остающийся цилиндрический целик породы поступает через центральное отверстие долота в керноприемную трубу, оснащенную в нижней части кернорвателем. Пробурив в заданном интервале ствол колонковым долотом, бурильную колонку с долотом и керноприемной трубой поднимают на дневную поверхность, при этом в момент «отрыва» долота от забоя кернорватель обрывает своими пружинами целик породы от забоя и удерживает его в керноприемной трубе до извлечения на поверхность. Если отбор керна производят в интервале, превышающем длину керноприемной трубы, а работоспособность одного колонкового долота достаточна для всего интервала отбора керна, то используют так называемую съемную грунтоноску, которую периодически, по мере её заполнения керном, извлекают на поверхность при помощи специального ловителя, спускаемого в полость бурильной колонны на канате. Таким же способом освобожденную от керна съемную грунтоноску опускают в скважину и устанавливают в колонковом долоте. Основными элементами всех долот являются: корпус, имеющий в верхней части коническую (замковую) резьбу для присоединения к колонне бурильных труб или погружному двигателю; промывочные устройства для направления струй промывочного агента на забой; породоразрушающие элементы.

Совместно с "Мультитран"
Яндекс.Метрика