ГЛАВНЫЕ НОВОСТИ
События
  • Заместитель Председателя Правительства РФ и Министр энергетики наградили победителей «Энергии молодости»

    19 Ноябрь 2015

    19 ноября 2015 г. члены Наблюдательного совета Некоммерческого партнерства «Глобальная энергия», Заместитель Председателя Правительства Российской Федерации Аркадий Дворкович и министр энергетики РФ Александр Новак вручили награды победителям ХII Общероссийского конкурса «Энергия молодости». Научные коллективы из Королева, Новосибирска и Санкт-Петербурга получили по 1 млн руб. на продолжение своих исследований. Их разработки решат вопрос дистанционного снабжения энергией летательных аппаратов, получения биотоплива нового поколения, а также выведут на новый уровень российскую геологоразведку.

    Также в церемонии награждения победителей приняли участие мэр Москвы Сергей Собянин и Председатель Правления ПАО «Сбербанк России» Герман Греф.

    Активные, генерирующие новые идеи молодые ученые - будущее отечественной энергетической отрасли. Некоммерческое Партнерство «Глобальная энергия» поддерживает их посредством Общероссийского конкурса молодежных исследовательских проектов в области энергетики «Энергия молодости».  Ежегодно в борьбе за гранты принимают участие ученые моложе 35 лет. Победителей определяет пул независимых экспертов Международной энергетической премии «Глобальная энергия». Необходимыми условиями для победы являются практическое применение разработки и возможности ее коммерциализации.

    Именно этим, в частности, интересовался Александр Новак во время общения с победителями 2015 года. Поздравляя их, он отметил важность разработок для российской энергетики и пожелал успеха в дальнейшей работе.

    Проекты победителей решают важные энергетические проблемы, при этом доказывая, что технологии будущего разработаны уже сейчас. Так, первым молодым ученым, получившим грант, стал Иван Мацак из Королева. Коллектив под его руководством работает над дистанционным энергоснабжением летательных аппаратов и робототехнических устройств инфракрасным излучением на земле и в космосе. Сегодня беспилотные летательные аппараты – дроны – применяются везде: от доставки товаров из интернет-магазинов, до съемок клипов, фильмов, репортажей, и даже используются для доставки еды в ресторанах. По оценке счетной палаты США, использование дронов во всем мире может принести свыше 82,1 млрд. долларов. Такие перспективы применения требуют доработки и самого аппарата: необходимо увеличить время его полета, которое сейчас составляет от 15 до 40 минут. Проблему энергоснабжения решает коллектив Мацака. Молодые ученые прикрепили к беспилотнику солнечную батарею, которая заряжается световым лазером. Она питает беспилотник, увеличивая время его полета до 24 часов без посадки. «Увеличение дальности и времени полета, а также грузоподъемности дрона за счет применения нашей технологии – это новый шаг для беспилотников. Они смогут решать еще больший круг задач и получить еще большее распространение, - делится Иван Мацак. – Сейчас мы готовим эксперимент по беспроводной передаче энергии, это уже другой класс приложений для спутников. Ну, и в перспективе – для передачи энергии из космоса на землю».

    Вторым победителем в этом году стал Алексей Бычков из Новосибирска. Его команде удалось создать биотопливо нового поколения, существенно повысив эффективность уже всем известного биоэтанола. Традиционно биотопливо производят из отходов сельского хозяйства и деревообрабатывающей промышленности – опилок, соломы и даже рисовой шелухи. Состоит получаемое вещество из двух компонентов: углеводов и лигнина. Чем больше процент последнего – тем выше температура сгорания. Команде Бычкова удалось увеличить  долю лигнина путем измельчения исходного материала  - тогда он лучше вступает в химические реакции и отдает «ненужные» углеводы. В полученном веществе процент  лигнина в 3,5 раза превышает среднерыночный показатель и составляет 70%. «Простое растительное сырье имеет теплоту сгорания порядка 20 МДж/кг. Это среднее значение. При помощи нашей обработки мы можем достичь значения 26 МДж/кг. Этот показатель характерен для бурых углей, - рассказывает Алексей Бычков. - При этом наше биотопливо совершенно безопасно для экологии, а его энергоемкость намного выше, чем у других «зеленых» источников энергии, таких как ветер, солнце и волны». Еще одно важное преимущество технологии заключается в том, что она решает вопрос утилизации отходов. Сейчас в России ежегодно производится более 340 миллионов тонн отходов в растениеводстве и деревообработке, из которых используется не более 1 миллиона. Остальное – гниет под открытым небом или сжигается. Для сравнения, в США из биомассы производится до 70 млрд киловатт-часов энергии, в Германии – свыше 40 млрд, стремительно наращивают мощности и другие страны. Проект команды Бычкова поможет ликвидировать наше отставание в области биотехнологий.

    Третий грант в этом году получил Сергей Кащеев из Санкт-Петербурга. Команда ученых под его руководством знает, как найти нефть и газ с помощью специального лазерного прибора. Причем сделать это на значительном расстоянии. Например, с борта самолета или вертолета при проведении аэросъемки. «Над любым месторождением, будь то на суше или на море, скапливается облако углеводородных молекул. Их можно уловить с помощью нашего лазерного анализатора, - отмечает Сергей Кащеев. – Это позволяет определить наличие энергосырья, спрогнозировать нефтегазоносность месторождения, а также выбрать наилучшие точки для глубокого бурения». Прибор значительно облегчает геологоразведку труднодоступных месторождений. Повышая точность обнаружения сырья,  он также экономит время и деньги геологоразведки. Важно, что эффективность прибора не зависит от погоды. Он улавливает даже малое скопление тяжелых углеводородов, обрабатывает полученную информацию и передает ее в центр. Такое исследование эффективнее аналогов более чем в 3 раза: на анализ 1 квадратного километра территории требуется меньше 1 дня. Несомненно, перспективы внедрения этого проекта большие. По словам ученого, основными потребителями разработки станут крупнейшие российские энергетические компании, занимающиеся разработкой труднодоступных месторождений, например, Арктического шельфа. Есть и внешние перспективные рынки – Саудовская Аравия, США, Азербайджан и Туркменистан.

    Напомним, Общероссийский конкурс молодежных исследовательских проектов в области энергетики «Энергия молодости» проводится ежегодно с 2004 года. За его 11-летнюю историю гранты получил 191 молодой ученый из 51 региона России. Общая сумма выделенных средств составляет 35,5 млн. рублей.

     

    Дополнительная информация:

    Наталья Наумова,  naumova@ge-prize.org , +7 495 739 54 35 

     

    О международной энергетической премии «Глобальная энергия»

    Премия «Глобальная энергия» – это независимая международная награда за выдающиеся исследования и научно-технические разработки в области энергетики, которые способствуют эффективному использованию энергетических ресурсов и экологической безопасности на Земле в интересах всего человечества.

    Премия была учреждена в 2002 году. Ежегодный премиальный фонд составляет 33 миллиона рублей. По традиции, премия вручается Президентом Российской Федерации в Санкт-Петербурге в рамках Петербургского международного экономического форума. С 2003 года лауреатами Премии стали 31 выдающийся ученый из Великобритании, Германии, Исландии, Канады, России, США, Франции, Украины, Японии и Швеции.

ДРУГИЕ СОБЫТИЯ ЭТОГО ОРГАНИЗАТОРА
Основные индексы:
Dow Jones 25 891,32 8,07 (0,03%)
Курсы валют:
USD 65,8568 -0,3454 (-0,52%)
EUR 74,6816 -0,1335 (-0,18%)
CNY 97,9516 0,1322 (0,14%)
JPY 59,3973 -0,3951 (-0,66%)
Акции нефтегазовых компаний:
Micex Oil & Gas 7147,72 63,49 (0,90%)
Rosneft 402,9 -0,0500 (-0,01%)
Lukoil 5445 1,5000 (0,03%)
Gazprom 154,43 0,4000 (0,26%)
Gazprom Neft 336,8 -0,9500 (-0,28%)
Surgutneftegaz 26,75 0,3750 (1,42%)
Tatneft 793,6 20,8000 (2,69%)
Bashneft 1940,5 -29,5000 (-1,50%)
Источник – Финмаркет
Tools
Длина, расстояние
000,00
Площадь
000,00
Объем
000,00
Вес
000,00
Скорость
000,00
Температура
000,00
Плотность
000,00
Давление
000,00
Сила
000,00
Объемная
скорость
000,00
Объем/Вес нефти
000,00
Плотность нефти
000,00
Объем/вес/энергия
природного газа
000,00
Объемный расход
газа
000,00
Rad
Gra
x!
(
)
С
AC
Inv
sin
ln
7
8
9
/
Pi
cos
log
4
5
6
*
e
tan
sqrt
1
2
3
-
Ans
exp
x^y
0
.
=
+

"Бурение и освоение нефтяных и газовых скважин. Терминологический словарь-справочник", Булатов А.И., Просёлков Ю.М., М.: Недра, 2007

Примеры терминов:

  • Пескоструйный труборез

    (abrasion sand-jet pipe cutter) устройство, имеющее нижнее и боковые отверстия с насадками из абразивно-стойкого материала и спускаемое на НКТ к месту работы. В трубы бросается шар, перекрывающий нижнее отверстие; подаётся абразивная жидкость (вода, ПАВ, кварцевый песок), которая выходит через боковые отверстия устройства, перерезая тело трубы.

    (abrasion sand-jet pipe cutter) устройство, имеющее нижнее и боковые отверстия с насадками из абразивно-стойкого материала и спускаемое на НКТ к месту работы. В трубы бросается шар, перекрывающий нижнее отверстие; подаётся абразивная жидкость (вода, ПАВ, кварцевый песок), которая выходит через боковые отверстия устройства, перерезая тело трубы.
  • Кривой переводник

    (bent sub) изогнутый цилиндрический инструмент, используемый при наклонно направленном и горизонтальном бурении, который позволяет отклонять бурильную колонну на рассчитанный угол.

    (bent sub) изогнутый цилиндрический инструмент, используемый при наклонно направленном и горизонтальном бурении, который позволяет отклонять бурильную колонну на рассчитанный угол.
  • Фильтрат бурового раствора

    (drilling mud filtrate) жидкая фаза бурового раствора, которая отфильтровывается в пласт-коллектор (фильтром являются порода-коллектор и глинистая корка на стенке скважины) вследствие разности давления столба жидкости в скважине и пластового давления.

    (drilling mud filtrate) жидкая фаза бурового раствора, которая отфильтровывается в пласт-коллектор (фильтром являются порода-коллектор и глинистая корка на стенке скважины) вследствие разности давления столба жидкости в скважине и пластового давления.
  • Интервал оптимальный перфорации

    (optimum perforated interval [zone]) интервал, при котором считается возможным получить максимум безводной и безгазовой нефти.

    (optimum perforated interval [zone]) интервал, при котором считается возможным получить максимум безводной и безгазовой нефти.
  • Боковое каротажное зондирование (БКЗ)

    (lateral logging souding) каротаж сопротивления, предусматривающий использование приборов однотипных зондов разной длины (в том числе стандартного зонда KC). В результате интерпритации данных каротажа получают значение...

    (lateral logging souding) каротаж сопротивления, предусматривающий использование приборов однотипных зондов разной длины (в том числе стандартного зонда KC). В результате интерпритации данных каротажа получают значение удельного электрического сопротивления пласта, близкое к истинному, а также параметры зоны проникновения фильтрата бурового раствора (сопротивление и диаметр зоны), по величинам которых с использованием петрофизических связей выявляют в разрезе полезные ископаемые. Также оценивают пористость, проницаемость коллекторов, нефтегазосодержание и др. (Д.И. Дьяконов, Е.И. Леонтьев, Г.С. Кузнецов, 1977; В.Н. Дахнов, 1959; С.С. Итенберг, 1961). Или: каротаж сопротивления с использованием нескольких однотипных зондов разной длины.
  • Газовый каротаж

    (mud logging) метод, заключающийся в определении количества углеводородных газов, поступающих в буровой раствор при бурении скважины. Результаты газового каротажа позволяют выделить газонасыщенные пласты.

    (mud logging) метод, заключающийся в определении количества углеводородных газов, поступающих в буровой раствор при бурении скважины. Результаты газового каротажа позволяют выделить газонасыщенные пласты. Для отбора газа из циркулирующего по скважине бурового раствора применяют дегазаторы. Содержание газа определяют газоанализатором путем извлечения газа и определения его количества. При бурении скважин с отбором керна Г.к. может быть проведен и по кернам.

  • Взаимодействие скважин

    (well interference, well interaction) интерференция скважин  изменение дебитов скважин или их забойных давлений, или тех и других одновременно под влиянием изменения режима работы окружающих скважин.

    (well interference, well interaction) интерференция скважин  изменение дебитов скважин или их забойных давлений, или тех и других одновременно под влиянием изменения режима работы окружающих скважин.
  • Термохимическая обработка скважин

    (thermochemical treatment of wells) метод интенсификации притока нефти к забоям скважин, заключающийся в применении при кислотной обработке скважин таких реагентов, которые обеспечивают: экзотермическую реакцию в пористых каналах; сохранение активности кислоты для последующей реакции с породой. Создаваемая экзотермической реакцией высокая температура, помимо ускорения реакций растворения трудно растворимых пород (доломиты), способствует расплавлению твердых и полужидких органических осадков (парафины, смолы), которые нередко образуются на стенке скважины и в поровых каналах в призабойной зоне. Наиболее часто применяются реакции соляной кислоты с едким натром, металлическим магнием или алюминием.

    (thermochemical treatment of wells) метод интенсификации притока нефти к забоям скважин, заключающийся в применении при кислотной обработке скважин таких реагентов, которые обеспечивают: экзотермическую реакцию в пористых каналах; сохранение активности кислоты для последующей реакции с породой. Создаваемая экзотермической реакцией высокая температура, помимо ускорения реакций растворения трудно растворимых пород (доломиты), способствует расплавлению твердых и полужидких органических осадков (парафины, смолы), которые нередко образуются на стенке скважины и в поровых каналах в призабойной зоне. Наиболее часто применяются реакции соляной кислоты с едким натром, металлическим магнием или алюминием.
Совместно с "Мультитран"
Яндекс.Метрика